
Shipping One Million Lines of Haxe
to (Over) One Million Devices

Todd Kulick & Gabriel Dalbec

Overview

• A little bit about TiVo

• TiVo and Haxe

– Evaluating Haxe for TiVo

– Converting a large AS3/Flash code base

• Lessons learned

• Future directions

TiVo Company Profile

• Founders Mike Ramsay and Jim Barton

• January 1999, TiVo unveiled it's Personal Television
Service at the CES

• Headquarters in
Silicon Valley

• Employees: ~600

• 4.5 Million active

subscribers

Worldwide Presence

Multiple countries:
United States, Canada, UK, Spain,
Sweden, Australia, New Zealand,

Mexico, Taiwan, Puerto Rico

Product Line Overview

• Digital Video Recorders (Roamio)
– Powerfully record HD broadcast, cable, IPTV (DVR)

– Record up to 1000 hours, 6 shows at once

– MSO/MVPD video-on-demand (VOD) integration

– Third-party streaming video integration (Netflix, YouTube, Hulu, etc.)

• Second Room Video Devices (Mini)
– Watch recordings on multiple devices throughout the home

• Mobile Applications
– Control DVRs (discover content, schedule)

– Download or stream video

• Online Web Video Portal
– Stream content to browser

TiVo Anywhere

Stream live or recorded shows
Download recorded shows

Schedule and browse

TiVo and Haxe

Flash Challenges

TiVo device user interface built on AS3 and Flash.
• ~500,000 lines of AS3 product code

• ~400,000 lines of AS3 tests

But we had looming problems…

• Support for Flash is waning
– Especially on embedded chipsets

• User interface performance non-ideal
– On embedded devices performance was, at best, bearable

• Going forward, fewer and fewer devices would support Flash

Could Haxe solve these problems?

Haxe Evaluation Criteria

• Basic evaluation

– Will Haxe/NME/OpenFL work for us generally?

– Is the language good (typed, efficient, easy to use/understand)?

– Are the right APIs/capabilities present (graphics/network/etc.)?

• Technical evaluation

– Will it work well on set-top box hardware?

– Will the computational parts be fast(er)?

– Will the graphics parts be fast enough?

– Will it work for an application the size/scale of ours?

• Developer workflow evaluation

– What is the development workflow like?

– How fast are incremental compiles?

– How effective/featureful are the code editing/searching tools?

– How mature are the debuggers?

Haxe Evaluation

To evaluate Haxe for our purposes, we would create a Haxe
prototype of our user interface application by converting some
of our AS3 code to Haxe…

• Test the as3tohx conversion tool
– Roughly converted 85% of the code to prototype quality

• Compare Haxe performance to Flash version

• Compare Haxe memory consumption to Flash version

• Compare Haxe image size to Flash version

• Evaluate Haxe development environment and tools

Haxe Evaluation

Beginning early last year, four developers spent three months
building a prototype and evaluating it against our criteria
• AS3 to Haxe conversion process worked reasonably

• Prototype’s performance was ~30% better

• Prototype’s memory consumption was reasonable

• Prototype’s image size was large, but workable

• Haxe development tools and IDEs were not quite as good as using Flash,
but were acceptable and could be improved

Our evaluation suggested that Haxe could meet our strategic,
technical and development needs!

So just about one year ago, we began to convert to Haxe!

Haxe Conversion Strategy

• Strategy

– Convert AS3 code to Haxe

– Compile using haxe/hxcpp and TiVo MIPS cross-compilers

– Use NME/OpenFL to provide Flash API

– Build new NME back-end on DirectFB API
• No OpenGL on many embedded set-top boxes

• Customized for best performance on set-top box devices

• Scope of conversion

– Total lines of code: >900,000

– Unit tests: ~17,000

Flash AIR Deployment

Encore (10’ UI)

Iris Toolkit Video

AIR 3.0.3 TiVo Flash
EDK

System API

Outer Loop Networking

Flash API

Graphics Audio Input

Custom
API

Video

Flash Engine

AS3

Interfaces

Run-time

Devices: TiVo set-top boxes

NME C++ Deployment

Encore (10’ UI)

Iris Toolkit Video

System API

Outer Loop Networking

Flash API

Graphics Audio Input

Custom
API

Video

Native C/C++ Runtime

hxcpp
(lib/hxcpp)

NME
(lib/nme)

TiVo EDK
(lib/edk)

Haxe

Interfaces

Run-time

Devices: TiVo set-top boxes, Android TV devices

OpenFL HTML/JS Deployment

Encore (10’ UI)

Iris Toolkit Video

System API

Outer Loop Networking

Flash API

Graphics Audio Input

Custom
API

Video

Browser

JavaScript Engine

OpenFL (lib/openfl, lib/openfl-html5-dom)

?

Haxe

Interfaces

Run-time

Devices: Browsers, Connected TVs & more…

Haxe Conversion Timeline

Spring: Looking for a
strategy for “after
Flash”

Summer: Began
learning about Haxe

Fall: Began
evaluating Haxe in
earnest

Winter: Conversion
code complete

Spring: WWX 2014 –
TiVo Haxe demo!

Summer: TiVo Haxe
shipping!

Spring: Decision to switch
to Haxe; WWX 2013

Summer: Conversion from
AS3 to Haxe begins

0

10

20

30

Haxe Conversion Goals

• Adobe/Flash independence
– …while leveraging our current user interface codebase

– Run-time smaller than embedded Adobe Flash engine, easier to
improve, more opportunities

• Performance benefits
– Better user experience

– Makes new, additional look & feel features possible

– No JIT “hiccups”, no JIT bugs(!)

• Multiplatform development efficiencies
– Build great user experiences that can be targeted at many devices

– Improvements made in the user experience would potentially have a
longer life span and broader applicability

Challenges

Workflow / development environment issues

• IDE support/quality in Linux/OSX
– No integrated debugging

– No integrate unit test execution

Application requirements issues

• Application must share graphics/audio resources

• NME designed for constant drawing/games

Haxe architectural issues

• UTF-8 / multilingual support rough

• String vs. Bytes confusion

• Map implementation handling of interfaces as keys

Challenges

Run-time issues

• Endianness issues in hxcpp

• Object churn and memory footprint

• Resulting executable size
– Generated reflection code large in hxcpp

– Object/function boxing in hxcpp

– Template size in hxcpp (not using "void*" design pattern)

Small compatibility issues

• No Date object support of UTC/localtime

• Weak reference bugs in hxcpp

Demo(s)

TiVo Haxe Contributions

• Improvements in as3tohx convertor (Dominguez)

• New hxcpp debugger

• New hxcpp compiled object caching

• IntelliJ IDEA Haxe plugin OSS'd & improved

• Numerous smaller Flash compatibility improvements in
NME/OpenFL (Granick)

• New NME back-end for TiVo STBs (DirectFB, custom-video, etc.)

– Smarter redraw logic (only when necessary)

• New OpenFL HTML5 back-end (Granick)

– Support for DOM rendering, optimized for low-end browsers

TiVo Future Directions

• Deployments through other Haxe back-ends/languages/devices
– HTML/JavaScript

– Android/iOS

• Pull requests for some additional TiVo improvements

• Continuing IDE/development environment improvements
– Better IntelliJ environment (building, debugging, etc.)

– Better multi-threaded support for GC/debugger in hxcpp

• Continuing hxcpp improvements
– Image size, run-time memory footprint, performance, GC, unreflective

• Continuing Haxe/NME/OpenFL churn improvements

• Continuing performance study/tuning

Haxelibs We Use/Love

We use the following...

TiVo Haxe Wishlist

• Better development environment
– Better IDE support on Linux
– Integrate debugger into IDE
– Integrate munit into IDE
– Continuing optimization of compiler and language back-ends

• Partial compilation for Haxe (libraries)

• Executable image size reduction when using hxcpp

• Foreign function integration API for “call in”
– CFFI only defines Haxe “call out”

• Short lambdas(?!)

Haxe has helped TiVo to successfully create
a faster, better user experience for our

customers.

Questions?

